Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.23.481644

ABSTRACT

The emergence and rapid spread of SARS-CoV-2 variants may impact vaccine efficacy significantly. The Omicron variant termed BA.2, which differs genetically substantially from BA.1, is currently replacing BA.1 in several countries, but its antigenic characteristics have not yet been assessed. Here, we used antigenic cartography to quantify and visualize antigenic differences between SARS-CoV-2 variants using hamster sera obtained after primary infection. Whereas early variants are antigenically similar, clustering relatively close to each other in antigenic space, Omicron BA.1 and BA.2 have evolved as two distinct antigenic outliers. Our data show that BA.1 and BA.2 both escape (vaccine-induced) antibody responses as a result of different antigenic characteristics. Close monitoring of the antigenic changes of SARS-CoV-2 using antigenic cartography can be helpful in the selection of future vaccine strains.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.19.476898

ABSTRACT

In late 2021, the highly mutated SARS-CoV-2 Omicron variant emerged, raising concerns about its potential extensive immune evasion, increased transmissibility and pathogenicity. Here, we used organoids of the human airways and alveoli to investigate Omicron's fitness and replicative potential in comparison with earlier SARS-CoV-2 variants. We report that Omicron replicates more rapidly in the airways and has an increased fitness compared to the early 614G variant and Delta. In contrast, Omicron did not replicate productively in human alveolar type 2 cells. Mechanistically, we show that Omicron does not efficiently use TMPRSS2 for entry or spread through cell-cell fusion. Altogether, our data show that Omicron has an altered tropism and protease usage, potentially explaining its higher transmissibility and decreased pathogenicity.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Infections , Seizures
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.20.444952

ABSTRACT

Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids (IOs) are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses.


Subject(s)
Severe Acute Respiratory Syndrome
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.03.441080

ABSTRACT

A new phase of the COVID-19 pandemic has started as several SARS-CoV-2 variants are rapidly emerging globally, raising concerns for increased transmissibility. As animal models and traditional in vitro systems may fail to model key aspects of the SARS-CoV-2 replication cycle, representative in vitro systems to assess variants phenotypically are urgently needed. We found that the British variant (clade B.1.1.7), compared to an ancestral SARS-CoV-2 clade B virus, produced higher levels of infectious virus late in infection and had a higher replicative fitness in human airway, alveolar and intestinal organoid models. Our findings unveil human organoids as powerful tools to phenotype viral variants and suggest extended shedding as a correlate of fitness for SARS-CoV-2.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Severe Acute Respiratory Syndrome , COVID-19 , Seizures
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.22.427802

ABSTRACT

Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein that facilitates serine protease-mediated entry into human airway cells. We report that propagating SARS-CoV-2 on the human airway cell line Calu-3 - that expresses serine proteases - prevents MBCS mutations. Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.

6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.07.286120

ABSTRACT

After the SARS-CoV outbreak in 2003, a second zoonotic coronavirus named SARS-CoV-2, emerged late 2019 in China and rapidly caused the COVID-19 pandemic leading to a public health crisis of an unprecedented scale. Despite the fact that SARS-CoV-2 uses the same receptor as SARS-CoV, transmission and pathogenesis of both viruses seem to be quite distinct. A remarkable feature of the SARS-CoV-2 spike is the presence of a multibasic cleavage site, which is absent in the SARS-CoV spike. The viral spike protein not only attaches to the entry receptor, but also mediates fusion after cleavage by host proteases. Here, we report that the SARS-CoV-2 spike multibasic cleavage site increases infectivity on differentiated organoid-derived human airway cells. Compared with SARS-CoV, SARS-CoV-2 entered faster into the lung cell line Calu-3, and more frequently formed syncytial cells in differentiated organoid-derived human airway cells. Moreover, the multibasic cleavage site increased entry speed and plasma membrane serine protease usage relative to endosomal entry using cathepsins. Blocking serine protease activity using the clinically approved drug camostat mesylate effectively inhibited SARS-CoV-2 entry and replication in differentiated organoid-derived human airway cells. Our findings provide novel information on how SARS-CoV-2 enters relevant airway cells and highlight serine proteases as an attractive antiviral target.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.27.263988

ABSTRACT

Transmission of severe acute respiratory coronavirus-2 (SARS-CoV-2) between livestock and humans is a potential public health concern. We demonstrate the susceptibility of rabbits to SARS-CoV-2, which excrete infectious virus from the nose and throat upon experimental inoculation. Therefore, investigations on the presence of SARS-CoV-2 in farmed rabbits should be considered.

SELECTION OF CITATIONS
SEARCH DETAIL